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Abstract

A theoretical analysis is presented for the dynamic behavior of a

simply supported rigid, perfectly plastic circular plate subjected to a

rectangular pressure pulse. It is shown that this theory, which considers

the simultaneous influence of membrane forces and bending moments, predicts

final deformations which are considerably smaller than those given by the

corresponding bending theory of Hopkins and Prager even when maximum de-

flections only of the order of the plate thickness are permitted. It is

believed that this theoretical analysis should assist in the interpretation

of the dynamic biaxial stress-strain characteristics of materials recorded

on diaphragms fitted in impact tubes and could be developed further in

order to describe the behavior of plates having other support conditions

and different dynamic loading characteristics.

Assistant Professor of Engineering (Research), Division of Engineering,
Brown University.



Notation

H plate thickness

I impulse per unit area of plate
I

It 1ppo 1/2

M aH 2 /4o 0

Mr, M8 radial and circumferential bending moments per
unit length

N aHo 0

Nr, N8 radial and circumferential membrane forces per
unit length

Q transverse shear force per unit length of plate

R outside radius of plate

Rr, Re principal radii of curvature

T time at which plate reaches permanent position

k(t), k° 0uniform distributed pressure per unit area of
undeformed plate

mr m8 dimensionless bending moments Mr/Mo, M /M°

nr, ne dimensionless membrane forces Nr/No0  NI/N0

p -k sine

6M
0PO R

q -k coso

r radial coordinate of plate

t time

u displacement in direction r of undeformed plate

w transverse deflection perpendicular to undeformed
plate



Notation (continued)

x r/R

y P/R

YO P /R

r r

cie u+r

(4p 0)1/2

-2po0/v

Se radial and circumferential strains

e circumferential coordinate lying in plate

K 2K radial and circumferential curvatures

A ko0/Po0

Smaw per unit area of plate

p, P0  radius of hinge circle
o

a 0 yield stress in simple tension

T duration of pulse

slope of the mid-plane of a plate measured in
a plane which passes through r = 0 and is
perpendicular to the plate surface

()T

S) -a



1. Introduction

The behavior of rigid-plastic circular plates under the influence of

static loads which produce infinitesimal deflections is fairly well estab-

lished [1, 2, 3, etc.]. When finite deflections are permitted, however, it

is observed that plates can support external loads considerably larger than

those predicted by these theories. Onat and Haythornthwaite [4] indicated

that this increased load carrying capacity is due mainly to the important

role which membrane forces play in the finite deformation of plates.

It is clear from a survey of the pertinent literature that most atten-

tion has been directed towards the dynamic deformation of plates in which

either membrane forces [5, 6, etc.] or bending moments [7, 8, 9, etc.]

alone are believed to be important. Moreover, with the exception of some

numerical work [10], the analysis of an annular plate by Florence [11], and

some recent work [12], no investigations have been conducted into the inter-

action effects between membrane forces and bending moments, although such

interaction influences considerably the static loading of plates [4] and the

dynamic loading of beams [13]. Florence [14] applied uniform distributed

impulses to some simply supported circular plates and observed that the ap-

propriate rigid-plastic theory [8] overestimated considerably the recorded

deflections particularly for large impulses. Recently it has been demonstra-

ted [12] that a significant improvement in the theoretical predictions of

plates loaded impulsively can be achieved if the influence of membrane forces

and bending moments is retained in the theory.
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Symonds [15] indicated that the permanent deformation of rigid-plastic

beams subjected to central force pulses having rectangular and triangular

shapes differed about ±15% from an equivalent half sine wave pulse with the

same maximum value and impulse. Perzyna [16] developed further the theory

of Hopkins and Prager [7], in which membrane forces are disregarded, and

showed that for a given impulse the character of the pressure-time function

had little influence on the final shape of a rigid-plastic circular plate.

Hodge [17] and Sankaranarayanan [18], on the other hand, found that the

blast characteristics had a profound effect upon the final deformation of

cylindrical and spherical rigid-plastic shells.

In practice, the blast load which acts on a plate or structure often

persists for a short period of time rather than behaving like a pure im-

pulse as assumed in Ref. [12]. It is the purpose of this article, there-

fore, to study the behavior of a rigid, perfectly plastic circular plate

when subjected to a rectangular pressure pulse such as the one shown in

Fig. 1. The results of this analysis will be compared with the correspond-

ing values from Ref. [7] so that they indicate the importance of membrane

forces and with those of Ref. [12] in order to examine and assess the dif-

ference between the permanent deflections corresponding to a pure impulse

and an equivalent rectangular pressure pulse.

2. Equilibrium Equations

It may be shown that the equilibrium equations for the finite deflec-

tions of a circular plate subjected to axisymmetrical dynamic loads can be

written in the form [12]

(leNr - a aN - ar 0Q/Rr + araep + 11aeii sinf - a cos = 0 (1)
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(aQ)' + a 6[Nr/R + N /R 6] + a + p e 'w cos, + PaeU sin# 0 (2)

( eMr)' - aIM - aa6Q= 0 (3)

provided the rotary inertia effect is disregarded, and

a +C
r r

ae = r + u = r(l + C)

1/Rr = 01/(l + £c)

I/R0 = sino/r

The positive directions of the various quantities are indicated in

Fig. 2.

If we limit our discussion to plates having small strains and deflec-

tions which are not too large, then we may let ae = r, ar = 1, I/Rr = C,

I/R8 = sin*/r, and a6 ' = cos€ which, using cost = 1, and sin =-w'

allow equations (l)-(3) to be recast as follows

rn ' + n - n = -rkw'/N + jr"w'/N + prii/N (4)r r o

and

rmr" + 2m' - me' - 4n w'/H = rk/M - urw/M + iriuw'/M° (5)

where,

n rO=N INnr,0 : r,8/No

mr,i = Mr,e/Mo

and rý'Q, rN r' and *'w' have been disregarded.
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3. Strains and Curvatures

It may be shown for small strains [19] that

S= (1 + u')i ' + (6)

6e = ý1r 
(7)

r : ( + u ) "+ 6' " -6 w " '(8)

and

e 'Ir (9)

Griffith and Vanzant [20] observed that the material of a circular plate

tends to move in a transverse sense at high rates of dynamic loading. This

suggests that

u: 0 (10)

4. Yield Condition

It has been found that disregarding elastic effects when analyzing canti-

lever beams loaded dynamically is a powerful simplification and a valid ap-

proximation, provided the external energy is at least three times larger than

the strain energy absorbed by the beam at the elastic limit [21]. Further,

Frederick [5] and Boyd [6] investigated the deformation of membranes made

from work-hardening material and found that a simplified perfectly plastic

analysis provided a remarkably accurate model of the true behavior. Conse-

quently the plate shown in Fig. 2 is assumed for the purposes of this analysis

to be made from a rigid, perfectly plastic material.

The yield condition proposed by Hodge [22] and illustrated in Fig. 3 will

be used in this article since it simplifies considerably a previous analysis,
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the results of which agree reasonably well with experimental values recorded

on plates loaded impulsively [12]. This approximate yield surface is an

"upper" bound to the Tresca yield condition for a uniform shell [23], while

a similar one 0.618 times as large provides a "lower" bound.

5. General Equations

Consider a rigid, perfectly plastic circular plate which is simply sup-

ported around its outer edge and subjected to an axisymmetrical dynamic load

k(t) , where k(t) is a function of time and is transverse to the mid-plane

of the plate.

Symmetry demands that at r = 0

mr = me = -1 , and n n =1, (11)

while for 0 $ r $ R it may be shown that equations (6)-(10) and a trans-

verse displacement of the form

w W(t)(1 - (12)
R

are consistent with the flow rule corresponding to the yield condition illus-

trated in Fig. 3 when

m8 = - r , n = 1 , -1 $ mr < 0 and 0 .< n .s 1 . (13)

Substituting equations (10) and (13) into (4) and (5) yields

M N w'
o - (r 2 m ') k(t) -iw + (14)

r 2  Dr r r

where k(t) is an external load, iUw is an inertia term, and N w'/r is in-
0

troduced when finite deflections are allowed. It may be shown that when the
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N w'/r term is disregarded and either k(t) or j.w or k(t) - are
0

retained, then equation (14) yields the same results as quoted in refer-

ences [1,8,7], respectively. If k(t) and N w'/r are retained and0

S= 0 , t h e n e q u a t i o n ( 1 4 ) p r e d i c t s r e s u l t s s i m i l a r t o O n a t a n d H a y t h o r n -

thwaite [4] for deflections at r = 0 greater than H/2 . The impulsive

loading case in reference [12] was analyzed using equation (14) with

k(t) = 0 , while this article is concerned with dynamic loading for which

all three terms must be included.

Substituting equation (12) into (14) and integrating gives

d2W(t)2k t+ y2 W(t) = 6 +2k(t) (15)

dt 2

where,
4p0
PH

-2 po

and the constants of integration have been evaluated using the conditions

that m = -1 at r = 0 , and m = 0 at r = R .r r

It may be shown, using equations (12) and (14), that

m " k(t) 11 d2W(t) r (16r -3M RM (• 2• (6
o 0 dt 2

which, using (15), indicates that m " 0 at r = 0 ifr

k(t) 2 4W(t) (17)
PO H

Thus, if k(t) 2 + 4W(t), then the yield condition given by equa-
Po H

tion (13) will be violated and some alternative yield condition must be sought.
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6. Rectangular Pressure Pulse 1 9 A s 2

The rectangular pressure pulse illustrated in Fig. 1 may be described

viz

k(t) = k for 0 t T (18)

and k(t) = 0 for T t T (19)

where T is the duration of a pressure of magnitude k and T is the
0

time at which the plate finally comes to rest.

6.1 First Stage 0 $ t $ T

The general solution of equation (15) for this case is

W(t) = A cosyt + B sinyt + 6/y 2 + 2ko/Vy 2  (20)

where the unknown coefficients A and B may be determined from the initial

conditions

w 0 at t= 0.

At the end of the first stage equation (20) gives

H
w H (A - 1)(1 - cosyT)(l - x) (21)

and

2 H (A - l)sinyT (1 - x) (22)

where x r/R ,and X ko0o/po

6.2 Second Stage r . t . T

The general solution of equation (15) for this stage is

W(t) C cosyt + D sinyt + 6/_2 (23)

hT-?iAP-TL
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where the unknown constants C and D may be found from the continuity

requirements which demand that the displacement and velocity given by equa-

tions (12) and (23) at t = T should match equations (21) and (22).

Thus,

W [{(l + A(cosyT - l)}cosyt + AsinyTsinyt - i](i - x) (24)

but w 0 at t = T.

Hence,

tanyT XsinyT (25)1 + A(cosyT - 1)

and at t T

H
w = [11 + 2A(l - cOSYT)(A - 1) - i](l - x) (26)

which, according to equations (17) and (18), is valid provided 1 X s . 2

If the w' term is disregarded in equation (14), then it may be shown

that

W H Ay2T 2 (A - 1)(1 - x) , at t = T (27)
4

which is the same as the result obtained by Hopkins and Prager [7].

7. Rectangular Pressure Pulse A >, 2

It has been shown previously that the yield condition given by equation

(13) is not suitable for rectangular pressure pulses with A > 2 . However,

a study of the behavior at A = 2 suggests that the yield condition given

by equation (11) spreads out to some radius r = p , the position of which

is related to A . The behavior of a thin circular plate loaded dynamically

with a rectangular pressure pulse having A >, 2 can be considered in three

stages, viz
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1. 0 $ t T r. k(t) = k , and a stationary hinge is formed0

at r po "

2. T $ t T . k(t) = 0 , and the hinge formed in part 1

travels inwards from r =p at t = T to r = 0 at

t = T

3. T1 s t s T . k(t) = 0 , and the hinge remains stationary

at r = 0 until the plate reaches a permanent position at

t =T2

7.1 First Stage 0 $ t $ T

If T is small then one might expect that the w' term in equation (14)

would only be important in the second and third stages. Therefore, disregard-

ing the w' term in equation (14) and integrating the result with the condi-

tionsthat m 0 at r =R and m =-1 at r = p it can be shown that

-=1 +P0 \2t%\3 (28)
SR

if,
k t 2

W = 0 for 0 $ r $ P (29)

and
k t 2

o (R -r)k 0 2• (R - r) , for p s r s R (30)

At the end of the first stage t T , equations (29) and (30) give

k T2 k T
0 * 0W _ for 0 s r s p (31)

and

o- (R-ro) , o (R -r)0 (R- r (R -r) for 0 < r < R (32)
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7.2 Second Stage T s t s T

It may be shown that

kT
_ o for 0 < r s P(t) (33)

and
S:o_ (R -r)0' (R - p(t)) for p(t) s r s R (34)

are consistent with the flow rule for the yield conditions

m =me =-i , n =n = 1 , when 0 .< r < p(t) (35)

r r e

and

m0 = -l , n 1 , -r . m . 0 , 0 0 n < 1 , when p(t) .< r $ R

(36)

Equations (33) and (34) are continuous across r = p(t) and at t = T

match the values given by equations (31) and (32) at the end of the first

stage.

Substituting equation (34) into (14) and disregarding the w' term,

it may be shown that

t + (P) 3  (37)

which suggests that an appropriate form for the time function retaining w'

in equation (14) is

t T +TI { P ) 2 +(2)3 2 (38)

Equation (38) gives t = T at o = p0  and

T1 T + T' (1 - -) when p = 0 (3g)
11 T
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where T' is an unknown constant, the value of which will be determined.1

later.

Differentiating equation (38) with respect to time gives

1 _ T1 (R + 3p)6 (40)

R- p R3

In order to analyze the behavior of the plate in this stage, it is conven-

ient to divide it into three separate regions 0 .< r s p(t) , p(t) . r .< p 0

and p s<r s R

7.2.1 0 < r .< p(t)

The deflection w using equations (31) and (33) is

k T2  t k T
W 2= + 0 dt (41)

from which

W' = 0 (42)

Thus, utilizing equations (33) and (42) equation (14) reduces to

3_ (r 2 m, ) 0

or

m = I(43)
r

which is consistent with equation (35).

7.2.2 P(t) .< r .< p°

The transverse displacement w at radius r is

k T2 t(r) k T k r)2 + -+-- dt + dt (44)
2p 11 It(r) p (R p)
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where from (38),

t(r) = + (n -3 2 (45)

Thus, using (40), equation (44) yields

k TT'
w - (Rp - Rr + (46)

iR3  2 2

which, when substituted with the derivative of (34) into (14), yields

k TR2  r3

m = o (2x 2 + 4Ya - x3 -. 3y4 - 6y 2 + 4y 3 ) +
r 12MoTI(l+3y)(l-y) 3  x x

k TT 
360-H (12xy - 4x 2 + 18y 2 x - 3x3 + 4Y3+9 12y - 24y3) - 1

(47)

where, x = r/R , y = P/R , and the constants of integration have been

evaluated from the requirement that mr and m ' are continuous across

r = pr

7.2.3 p• r R

Now,
kt 2 (R- r) koT(R - r)dt

W J ( (48)

T

and

-k T 2  koTT'
W'= -o 1 (2ROp + 3p 2 - 2RP - 3p0

2 ) (49)
t ybso , usin0 2g( R3 0 i

It may be shown, using (34) and (49) that equation (14) gives
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m kc0 R2  (2x 2 - x3 + 4 _3 - 3 6y 2 + 4y3)
T'(1-y) 3 (1+3y) x x

k T2 (x-y )2 k TT' 4y 3
0 - 0 + 60--- (12xy + 18xy 2 - 12xy° - 18xy2  -

j'Hx(l-y 0) 6H00 X

9 +0 + 12y + 24y 3 + 4y3 +y 4
- 12y 2 - 24y) - 1 (50)

x 0 0 X X

where the constants of integration have been evaluated from the requirement

that mr and mr' given by equations (47) and (50) are continuous at r = po

However, m = 0 at x = 1 . Thus,

kotR2 (1-69,+ 8y 3 - 3y4 ) k T2 (1-yo) koTT{
kl0 0T + k ( 1 2 y + 6y 2 

- 20y 3 +

12M (l-y)3 (1+3y)T{ I 1H 6jiH

9y4 - 12y - 6y2 + 20y 3 - 9y 4 ) - 1 = 0 (51)
0 0 0 0

which putting y = 0 gives

C 1T 2 + C2 T + C3 = 0 (52)

where
k T

C 2 (-12Y - 6y2  + 20y - 9y 4 ) (53)
1 61jH 0 0 0 0

-k T2

0= 0 (l-y(54)2 (i-y) -1

c AT (55)

Thus, -C 2* C2 2 4CC3
2 2 3(58)

1 2C1

and2
1T = T + T'(I - 2) 

(57)
1 1 A
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7.3 Third Stage T1 < t .< T2

The transverse displacement given by equation (12) may be used during

this stage because the hinge remains stationary at r = 0 . However since

the relations for w' are given by different expressions across the plate,

then it is necessary to divide the plate into two sections 0 $ r $ po0 and

PO $ r $ R.

7.3.1 0 $ r $ p0

Using equations (12) and (46) with p = 0 , it may be shown that

-k tTV
o 1 ( 3r2) W(t)w - (Rr + 2 R8)

which with equation (12) allows (14) to be rewritten,

)- i dW' -4kotTl 3r 3 % 4W(t)r (59)

(r 2 m IL d2W(t) (r2 - ) 1- o1(R, 2 I RH3r r M dt 2  RiR 3 14

or

(22- X3)-k Td (2x 2 _ H)(4x2 + 3x 3 ) - 2Wr- 1 (60)r 2ýPo dt2 6UH RH

where the constants of integration have been evaluated from the condition

that m= -1 at r= 0r

7.3.2 p r f R

_ k r2  k TT' 3p2 W(t)
w? 2 0 0 1 R 0) R (Rp + 2o---) R

2U(R - p 0 pR3  (61)R

which, when substituted into equation (14) with (12), yields

a - d2 W(t) r 3 2k 2r 4k TV -Wr
(r 2 m ') - (r 2  - 0 )H 1 (Rp + - )r- R-r dt2 RR 3 H o 2 RH

(62)
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from which it may be shown that

I d2W 'r2• r3 P pO3 P O p 0 2 PO3I k 0T 2 P o2

m = - -- + - kto (r + - 2o)
r +dt2 6 12R 4Rr 2 03R " H(R - 0 r

2kotTT  3po2 2Wo21

o (Rp + -- )(r +--+ ) -2r--2p 2W +po2)1)F+G

pR 3 H o 2 r o RH- r o r p 0

(63)
where, in order to make mr and m ' match equation (60) and its derivative

across rp , o
p P0

3  d2W 1 P 4k TTR 3P0 2WP 2
F- d= 1 -o o-2 10 T(+ ) - 0(64)M 0 dt2 3( 4R R3H 8o3 8 RH

and
p2 2 P 4k TT' P 2WPPo d W 0 -01 2 R o o

G (2 - -) - p (R + 0) - - 1 (65)o dt2  R iR 3H o (6 8- RH

Now if m = 0 at r = R then it may be shown, using (63)-(65), thatr

d 2W-
-d + Y2W = (66)
dt 2

the general solution of which is

W = M cosyt + N sinyt + Z/y 2  (67)

where
4p
2 0 (68)

and
2po 2pokoT2  pokoTT2

(1 - ) 0 (1 2 y° + 6yo 2 - 20y 3 3 Y
- -

2 H 0 311 2 H (69)

At the beginning of the third stage t T1 , W = 0 and the velocity

given by equations (12) and (67) must match equation (34) at the end of the

second stage.
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Hence,

+cosyT kTS in+ yT 0TcosyT 6sin
W(t) = ( 2 + /Cos +t +/!lt

(70)

and

(icosyTi 1 k 0TsinyTl) + (koTCoSyTl isinyTi) cosyt (1
S= +sinyt 7 o t( 71 )

But =0 at t =T2 where,

k 0oosyT1 ZsinT

tanyT2 = (72)
A_ cosyT1 - k TsinyT

Y U

Thus,

k T2  koTTV
W o o + (1 2 x x

k 2T2 1/2
+ {- + (-2 + ) }(1 - x) , for 0 s x . y (73)

Y 2 y 4 V 2 20

and

k o2(1 - x) kor(1 - x)T' 3y 2

W 0 i - + 0 (Yo +
2u(1 - y (y 0i-

k 2T2 1/2
+ {. + (. + 0 ) 1( - x) , for y " x 1 1 (74)

Y 2 4 U 2 Y20

At r = 0 , equation (73) gives

ko T2  koTT 1 Z2- ko 2T2 1 / 2

w - - + - + (+ ) (75)
max 21 Y 2 4 j2Y2

If the w' term is disregarded in (14), then it may be shown that

wmax = XHy 2 T2 (3O - 2)/16 , at t = T2 (76)

which is identical to the result obtained by Hopkins and Prager [7].
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8. Discussion

The yield condition [22] indicated in Fig. 3 circumscribes the yield

surface of a uniform shell which yields according to the Tresca criterion

[23]. A solution which is obtained using this simplified yield condition

is termed an "upper" bound while one calculated using a yield surface 0.618

times as large and, therefore, lying everywhere inside the exact yield sur-

face is referred to as a "lower" bound. It is assumed that these "upper"

and "lower" bounds would straddle the true solution based on an exact yield

surface.

It is clear from the results plotted in Fig. 4 that membrane forces in-

fluence considerably the permanent deformation of a simply supported circu-

lar rigid-plastic plate loaded dynamically with a rectangular pressure pulse.

Hopkins and Prager [7] predict that the final deformation of a plate in-

creases with increase of (k /p ) for a given impulse. However, inclusion

of the membrane forces gives rise to a trend in the reverse sense which in-

dicates that membrane forces become increasingly important with increase in

The permanent deformations predicted by the theory presented herein for

rectangular pressure pulses of various magnitudes are compared in Fig. 5 with

the results obtained from ref. [12] for equivalent impulses. It is evident

that a rectangular pressure pulse with X = 12 predicts results similar to

those presented in [12] for an impulse, while for smaller values of X ,

larger deflections are predicted at a given magnitude of I' . It is worth

noting in passing that the curves for the impulsive case plotted in Fig. 5

bound closely some experimental results recorded by Florence [14] on Aluminium

plates with R/H = 16 .
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9. Conclusions

A theoretical analysis which retains the influence of bending moments

and membrane forces has been presented for a simply supported rigid-plastic

circular plate loaded with a rectangular pressure pulse. It can be shown

that this theoretical analysis predicts final deformations which are con-

siderably smaller than those given by the bending theory of Hopkins and

Prager [7] even for maximum deflections only of the order of the plate thick-

ness. It may be shown that a rectangular pressure pulse with A = 12 gives

a similar maximum permanent deformation to an equivalent impulse, while for

smaller values of A the permanent deflections are larger.

It is thought that the theoretical analysis presented here could be

developed further in order to describe the behavior of plates having other

support conditions and different characters of loading. However, it is be-

lieved that some estimate of the influence of strain-rate effects should be

made perhaps in a manner similar to those of Wierzbicki [24] or Perrone [25)

who disregarded membrane forces.

Acknowledgments

The work reported herein was supported by the Advanced Research Project

Agency, Department of Defense, under contract number SD-86 awarded to Brown

University.

The author wishes to take this opportunity to express his appreciation

to Miss E. Cerutti for computing the final results, and to the National Science

Foundation (Grant Number GP-4825) for making funds available to cover the

costs of machine time.



-19-

References

1. Hopkins, H. G., and Prager, W., "The Load Carrying Capacities of Circular
Plates," Journal of Mechs. and Physics of Solids, Vol. 2, No. 1,
pp. 1-13, 1953.

2. Drucker, D. C., and Hopkins, H. G., "Combined Concentrated and Distribu-
ted Load on Ideally-Plastic Circular Plates," Proc. 2nd U. S. Nat.
Cong. App. Mechs., 1954, pp. 517-520.

3. Hu, L. W., "Design of Circular Plates Based on Plastic Limit Load," Jour-
nal of Eng. Mechs. Div., Proc. A.S.C.E., Vol. 86, No. EMl,pp.91-115,1960.

4. Onat, E. T., and Haythornthwaite, R. M., "The Load Carrying Capacity of
Circular Plates at Large Deflection," Jour. App. Mechs., Vol. 23,
March 1956, pp. 49-55.

5. Frederick, D., "A Simplified Analysis of Circular Membranes Subjected to
an Impulsive Loading Producing Large Plastic Deformations," Proc.
4th Annual Conf. on Solid Mechanics, University of Texas, Austin,
Texas, Sept. 1959.

6. Boyd, D. E., "Dynamic Deformations of Circular Membranes," Jnl. Eng. Mech.
Div., Proc. A.S.C.E., Vol. 92, No. EM3, June 1966, pp. 1-16.

7. Hopkins, H. G., and Prager, W., "On the Dynamics of Plastic Circular
Plates," ZAMP (Jnl. of App. Math. and Physics), Vol. 5, No. 4, 1954,
pp. 317-330.

8. Wang, A. J., "The Permanent Deflection of a Plastic Plate Under Blast
Loading," Jnl. App. Mech., Vol. 22, 1955, pp. 375-376.

9. Florence, A. L., "Clamped Circular Rigid-Plastic Plates Under Central
Blast Loading," Int. J. Solids and Struct., Vol. 2, pp. 319-335,
1966.

10. Witmer, E. A., Balmer, H. A., Leech, J. W., and Pian, T. H. H., "Large
Dynamic Deformations of Beams, Circular Rings, Circular Plates,
and Shells," AIAA Launch and Space Vehicle Shell Structures Conf.,
Palm Springs, California, April 1963.

11. Florence, A. L., "Annular Plate Under a Transverse Line Impulse," AIAA
Jnl., Vol. 3, No. 9, pp. 1726-1732, Sept. 1965.

12. Jones, N., "Impulsive Loading of a Simply Supported Circular Plate,"
Brown University Report No. ARPA 37, Feb. 1967.

13. Symonds, P. S., and Mentel, T. J., "Impulsive Loading of Plastic Beams
with Axial Constraints," Jnl. Mech. Physics of Solids, Vol. 6,
pp. 186-202, 1958.



-20-

14. Florence, A. L., "Circular Plate Under a Uniformly Distributed Impulse,"
Int. J. Solids and Struct., Vol. 2, pp. 37-47, 1966.

15. Symonds, P. S., "Dynamic Load Characteristics in Plastic Bending of
Beaus," Jour. App. Mech., Vol. 20, No. 4, pp. 475-481, 1953.

16. Perzyna, P., "Dynamic Load Carrying Capacity of a Circular Plate," Arch.
Mach. Stos., Vol. 10, No. 5, pp. 635-647, 1958.

17. Hodge, P. G., "The Influence of Blast Characteristics on the Final Defor-
mation of Circular Cylindrical Shells," Jnl. of App. Mech., Vol.
23, pp. 617-624, 1956.

18. Sankaranarayanan, R., "On the Dynamics of Plastic Spherical Shells," Jnl.
App. Mech., Vol. 30, March 1963, pp. 87-90.

19. Reissner, E., Proc. Symposia App. Math., Vol. 1, pp. 213-219, 1949.

20. Griffith, J., and Vanzant, H., "Large Deformation of Circular Membranes
Under Static and Dynamic Loading," 1st Internat. Cong. on Exptl.
Mech., New York, Nov. 1961.

21. Bodner, S. R., and Symonds, P. S., "Experimental and Theoretical Investi-
gation of the Plastic Deformation of Cantilever Beams Subjected to
Impulsive Loading," Jnl. App. Mechs., Dec. 1962, pp. 719-728.

22. Hodge, P. G., "Yield Conditions for Rotationally Symmetric Shells Under
Axisymmetric Loading," Jnl. of App. Mech., Trans. ASME, June 1960,
pp. 323-331.

23. Onat, E. T., and Prager, W., "Limit Analysis of Shells of Revolution,"
Parts I and II, Proc. Royal Netherlands Acad. of Sci., Vol. B57,
pp. 534-541 and 542-548, 1954.

24. Wierzbicki, T., "Dynamic of Rigid Visco-plastic Circular Plates," Arch.
Mech. Stos., Vol. 17, No. 6, pp. 851-868, 1965.

25. Perrone, N., "ImPulsively Loaded Strain-Rate-Sensitive Plates," J. App.
Mech., Paper No. 67-APM-F.

mlw



_ i: koT

k 0
w

o)

0 T TIME t

FIG. I RECTANGULAR PRESSURE PULSE



RR

dNr

r Du

d O 
D

B•

r_1 dr

N r

r+ u

m Mr Mr+3Mr

I NOC

rF 2

FIG. 2



U-

0

z
0

LL



X=6 X=2

14 X12 1 X=2 /X=

S/X=I2

12 =6lii / 1/

I/l a// X=12
10, / ,]II0/ /8-

E Xko/po"E" , , 6oP
6f I I/(u H Po) '/

4 i, UPPER' BOUND
/''7 'LOWER' BOUND

BENDING ONLY THEORY
2- (HOPKINS AND PRAGER (7))

0
0 2 4 6 8 10

FIG.4 INFLUENCE OF MEMBRANE FORCES ON
THE FINAL DEFORMATION OF A SIMPLY
SUPPORTED CIRCULAR RIGID-PLASTIC
PLATE SUBJECTED TO A RECTANGULAR
PRESSURE PULSE.



X=2 X=4
X =ko /Po X=4
X- 0 p / / X4

14- I I/(..HPo) 1/ 'LOWER'
S/ BOUND

X/ = 12
12 "

/ X 12/12 / /
// '

10 0 UPPERI0 - / /BOUND

7'Z /

,8-El-r i

6 Z

UPPER' BOUND
,- -'LOWER' BOUND
4. IMPULSIVE CASE

(REF. (12))

0II I I I

0 200 400 600

FIG. 5 COMPARISON BETWEEN THE FINAL
DEFORMATIONS OF A RIGID-PLASTIC
CIRCULAR PLATE SUBJECTED TO A
RECTANGULAR PRESSURE PULSE OR AN
IMPULSE.


